Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647049

RESUMO

Intravenous and oral 14 d repeated dose toxicity studies of Trichostatin A (TSA) were carried out in Swiss albino mice using low, intermediate, and high doses. Intravenous doses were 10, 25, and 50 µg/kg b.w while the oral doses were 20, 50, and 100 µg/kg b.w. Respective control groups of mice were administered phosphate buffered saline (vehicle only) for 14 consecutive days. All external morphological, hematological, biochemical, urine, histopathological, food intake in addition to body weight and vital organ weight were recorded. During the study no mortality in any animal was observed in either treatment routes. There were no significant changes in morphology, food intake, hematology, biochemical, urine analysis, organ weight. Animals treated high dose of TSA intravenously (50 µg/kg b.w) and orally (100 µg/kg b.w) had enlarged, congested, and discolored kidneys which were statistically significant. Histopathological studies had shown statistically significant degenerated glomerulus in high dose of intravenous and orally treated animals and degenerated tubule were found in orally treated animals. Genotoxicity was evaluated using micronucleus frequency at 14 and 21 d after treatment and chromosomal aberration at 21 d after treatment. Micronucleaus assay and chromosomal assay however did not show any significant changes at any doses and administration routes. Therefore, this study concludes that dose ∼25 µg/kg and ∼50 µg/kg b.w may be considered as No Observed Adverse Effect Level (NOAEL) for intravenous and oral administration of TSA respectively.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36031339

RESUMO

Trichostatin A (TSA), derived from the bacteria Streptomyces hygroscopicus, is a hydroxamic acid having various biological properties such as histone deacetylase inhibition, anticancer and radiomitigative action. However the mitigative activity of TSA against radiation-induced damages in the mouse reproductive system has not yet been elucidated. The present study unraveled the effects of 2 Gy whole body irradiation (60Co γ- radiation) on C57BL/6 mice male reproductive system including structural damages to testes, increase in apoptosis and reduction in germ cell viability, reduced fertility as well as increased genomic instability in the next generation. Moreover, hematological study and micronuclei assay were used to record chances of radiation-induced hematologic cancer and disruption of genomic integrity in F1 generation. Interestingly, TSA administration 1 and 24 h post-irradiation attenuated radiation-induced morphological damage and cellular apoptosis in testes. In male mice, TSA restored hematological parameters and micronuclei frequency to normal levels, restored sperm viability, and helped them overcome radiation-induced temporary sterility 5 weeks after the irradiation. Thus our results showed that TSA reduced the probability of radiation-induced hematologic cancers as well as genotoxicity and restored genomic integrity in the progenies of paternally exposed mice by reducing radiation-induced apoptosis in spermatogenic cells and restoring cell proliferation. This study suggested that TSA could be used as potential radiomitigator for male reproductive system.


Assuntos
Lesões por Radiação , Sêmen , Animais , Apoptose , Ácidos Hidroxâmicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo
3.
Mutagenesis ; 36(4): 303-309, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34086940

RESUMO

Radiation exposure in utero is known to lead to serious concerns to both the mother and children, including developmental anomalies in the children. In the recent past, trichostatin A, an HDAC (histone deacetylase) inhibitor and epigenetic modifier, has been shown to mitigate radiation-induced anomalies in the male reproductive system of C57BL/6 mice. Therefore, the current study was undertaken to evaluate the mitigating effects of trichostatin A (TSA) against radiation-induced developmental anomalies in mice. Foetuses of in utero whole-body gamma-irradiated mice during the active organogenesis period were examined for developmental anomalies at 8.5 and 18.5 days of gestation. In utero radiation exposure caused developmental anomalies like microcephaly, microphthalmia, gastroschisis and kinky tail besides prenatal mortality. TSA administration post-irradiation was observed to reduce 50% of prenatal mortality at E18.5 by reducing congenital and developmental anomalies. Observation of such results could be corroborated with the HDAC inhibitory potential of TSA knowing that developmental anomalies may have epigenetic origin. TSA, therefore, can be considered as a potential radiomitigator.


Assuntos
Feto/efeitos da radiação , Raios gama/efeitos adversos , Ácidos Hidroxâmicos/uso terapêutico , Teratogênese , Animais , Epigênese Genética , Feminino , Feto/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Int J Radiat Biol ; 95(4): 443-451, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30307353

RESUMO

PURPOSE: Ionizing radiation is known to damage male reproductive system. Current study aims to study the mitigative effects of trichostatin A on male reproductive system and accompanying metabolite changes in testicular tissue of mice. MATERIALS AND METHODS: Eight-week-old male C57 Bl/6J mice were exposed to 2 Gy γ-radiation with or without trichostatin A administration. The animals were sacrificed at various time intervals for organ body weight index, sperm head abnormality assay, sperm mobility assay, and study of various metabolites in testicular tissue using NMR spectroscopy. RESULTS: Ionizing radiation induced no significant change in organ body weight index at any time points studied, however a significant increase in sperm head abnormality and significant decrease in sperm mobility was evident on fifth postirradiation week. trichostatin A administration, 1 and 24 h postirradiation, could efficiently mitigate radiation-induced changes studied. NMR metabolome profile also showed prominent changes associated with energy metabolism, osmolytes and membrane metabolism at 24 h postirradiation and some of these changes (choline, glycerolphosphoethanol amine, and glycine) were persistent till fifth postirradiation week. Trichostatin A administration resulted in reverting metabolic profile of the irradiated animals to normal level suggesting its mitigative role. CONCLUSION: Results obtained suggest that trichostatin A could restore normal metabolic profile of testicular tissue of irradiated male mice and also restored certain morphological and functional properties of sperms. Trichostatin A thus could further be exploited for its radio-mitigative properties.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Lesões por Radiação/prevenção & controle , Testículo/efeitos da radiação , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos da radiação , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/anormalidades , Espermatozoides/efeitos da radiação , Testículo/metabolismo
5.
Front Immunol ; 8: 506, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28512460

RESUMO

Delivery of high doses of radiation to thoracic region, particularly with non-small cell lung cancer patients, becomes difficult due to subsequent complications arising in the lungs of the patient. Radiation-induced pneumonitis is an early event evident in most radiation exposed patients observed within 2-4 months of treatment and leading to fibrosis later. Several cytokines and inflammatory molecules interplay in the vicinity of the tissue developing radiation injury leading to pneumonitis and fibrosis. While certain cytokines may be exploited as biomarkers, they also appear to be a potent target of intervention at transcriptional level. Initiation and progression of pneumonitis and fibrosis thus are dynamic processes arising after few months to year after irradiation of the lung tissue. Currently, available treatment strategies are challenged by the major dose limiting complications that curtails success of the treatment as well as well being of the patient's future life. Several approaches have been in practice while many other are still being explored to overcome such complications. The current review gives a brief account of the immunological aspects, existing management practices, and suggests possible futuristic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...